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Abstract

This paper presents a simple periodic parameter-switching method which can find any stable limit cycle
that can be numerically approximated in a generalized Duffing system. In this method, the initial value
problem of the system is numerically integrated and the control parameter is switched periodically within
a chosen set of parameter values. The resulted attractor matches with the attractor obtained by using the
average of the switched values. The accurate match is verified by phase plots and Hausdorff distance measure
in extensive simulations.
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1 Introduction

The well-known Duffing system was coined in 1918, which is one of the mostly studied nonlinear dynamical
systems describing mechanical structures, and electric circuits and even biological re systems. This paper
considers a generalized Duffing system of the form

..
x+ a

.
x+ px+ bx3 + c sign(x) + d sign(

.
x) = e cos (ωt) , (1)

where a, b, c, d, e, ω and p (considered as the control parameter) are real parameters. As for almost all practical
examples, at least one of the parameters, c and d, will be zero. Thus, according to different functions of c and
d, one could have the classical form of excited Duffing oscillator (c = d = 0), dry friction models (c = 0, d = 1),
or other phenomena such as clearance, vibro-impacts, and preloaded compliance (c = 1, d = 0). The external
force is typically considered to be periodic, since the study of the long-term behavior of an oscillator is relevant
only in this setting.

Duffing’s smooth and discontinuous dynamics are a very good examples for demonstrating how deterministic
chaos appears in mechanical systems that may be described as oscillators derived from a nonlinear potential. For
illustration, routes to chaos through bifurcations are shown in Fig.1. There exists a large volume of bibliography
on the rich dynamics of the Duffing oscillator, some of the first titles being [13, 28] and [20], while experimental
implementations of the Duffing system can be found in many references, e.g. [19].

Many non-smooth systems appear naturally in practical systems because such physical phenomena present
discontinuities, for instance the discontinuous dependence of friction force on the velocity, mechanical structures
under impacts and dry friction, brake processes with phase lock, oscillating systems with combined dry and
viscous damping, elasto-plasticity and forced vibrations. Also they appear in power electrical circuits, convex
optimization, control synthesis of uncertain systems, walking and hopping robots, and even gene regulatory
networks and neuronal networks, etc. [2, 3, 9, 21, 22, 23, 24, 26, 29]. Noticeably, a large number of papers
are devoted to studying the fundamentals of discontinuous equations (such as (1)) or to the afferent differential
inclusions which help tackle various difficult discontinuous problems [1, 11, 15, 16]. These studies clearly
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indicate that dry friction and its underlying discontinuity present an important topic in both mathematical and
engineering research.

Motivated by the above observations, considering the system (1) with discontinuity appears to be a natural
approach to more realistic engineering systems design and analysis. The present paper therefore investigates an
important and yet challenging problem in this system, more precisely a problem of approximating (synthesizing)
any stable attractor in system (1) by alternating parameter p within a set of chosen values while the system is
numerically integrated.

For this purpose, we will use the Parameter Switching (PS) algorithm. This algorithm is very effective in
approximating various complex dynamical behaviors corresponding to the switched parameter, such as multiple
attractors. It has been analytically proved [17, 18] that for a large class of continuous systems, any synthesized
attractor obtained by using this algorithm can well match with the attractor obtained by replacing p with the
average of the alternated p values. This has also been verified numerically applicable to more general classes
of dynamical systems. Moreover, the effectiveness of the PS algorithm has been tested on several systems,
including continuous, discontinuous, and fractional or integer order systems [5, 7]), such as Lorenz, Rössler,
Chen, Chua, Lü, Lotka Volterra, and Hindmarsh-Rose neuronal systems, among others.1

System (1) is solved mathematically by the following general Initial Value Problem (IVP):

.
x = f(x) + pAx+Bs(x), x(0) = x0, t ∈ I = [0,∞). (2)

This shows that the system depends linearly on p, same as for the general class of many known systems like the
Lorenz, Chen, Rössler, Chua, Hindmarsh-Rose, Lotka Volterra systems. In (2, p ∈ R, x ∈ Rn, A,B ∈ ℜn×n are
constant matrices, f : Rn → Rn is a nonlinear at least continuous vector function, and s : Rn → Rn is a vector
piecewise linear vector function being composed of scalar signum functions, namely

s(x) =

 sgn(x1)
...

sgn(xn)

 .

Function of the entries of the matrix B, the IVP (2) can model continuous systems (when B = On×n) or
discontinuous with respect to the state variable (Filippov like systems [11], when B ̸= On×n).

Now, consider the Duffing oscillator (1) in the phase space R3 having the following three autonomous
equations:

.
x1 = x2,
.
x2 = −ax2 − px1 − bx3

1 − c sign(x1)− d sign(x2) + e cos (x3) ,
.
x3 = ω.

(3)

It can be easily seen that this belongs to the class of systems described by the IVP (2) with

f(x) =

 x2

−ax2 − bx3
1 + e cos (x3)
ω

 , A =

 0 0 0
−1 0 0
0 0 0

 , B =

 0 0 0
−c −d 0
0 0 0

 .

Even the system (3) is three-dimensional, so our interest here is focused, on the phase plane (x1, x2), as usually
for planar systems.

We will investigate the effect of the positive parameter p.2 For the others parameters, we chose:
a = 1 i.e. the case of a strong dissipation (damped oscillations), in order to avoid long chaotic transients,

typical for weak dissipation (as known, chaotic behaviors could persist for some transient time before the
trajectory approach near the attractor [14])3;

b = 1;
c and d are chosen 0 or 1 corresponding to the continuous or discontinuous case.
e = 37 (the amplitude of the driving forces on oscillations x);
ω = 0.88.

1As shown in [5, 7, 17] chaotic attractors can also be synthesized. However, in this paper we are interested only in the stable
limit cycles.

2As is well known, p can also be negative (the ”inverted” Duffing equation). Also, as known, any of the coefficients a, b, c, d, e
or ω can be chosen as control parameter.

3The effectiveness of the PS algorithm is not influenced by the weak dissipation case, corresponding to a ≪.

2



2 Attractors synthesis

2.1 Preliminary results and notions

Notation 1. Let PN = {p1, p2, ..., pN} a set of N > 0 values of p. The average value, denoted by p∗ is given by

p∗ =

N∑
k=1

pkmk

N∑
k=1

mk

, (4)

where mi are some positive integers, which will be precisely defined later.
2. We denote the attractors obtained through alternating p with the PS algorithm, the synthesized attractor,
by A∗ and the average attractor by Ap∗ , corresponding to p = p∗.

Remark 1 In different functions on mk values in (4), p∗ could be an element of PN . However, in this paper we
consider that p∗ /∈ PN , since in practical examples it is more realistic to approximate an attractor Ap∗ starting
from a set PN which does not contain p∗.

To understand how the PS algorithm works, we further consider the general problem (2) for the continuous
case (B = 0n×n), with a time-dependent p, as follows:

ẋ(t) = f(x(t)) + p (t)Ax(t), x(t0) = x0, t ∈ I, (5)

where p : I → PN is considered a piecewise constant periodic function with the period T0, and the the mean
value p∗, namely,

1

T0

∫ t+T0

t

p(u)du = p∗, t ∈ I.

also, the average model of (5), is expressed as follows;

ẏ = f(y) + p∗Ay, y(0) = y0. (6)

Equation (5) represents the mathematical model of the PS algorithm.
In additiona, we need the following assumptions.
(H1) The IVP admits unique solutions (e.g., when f is Lipschitz continuous).
(H2) To each p value, there corresponds a single attractor which will be numerically approximated by its ω-limit
set [12], after neglecting a sufficiently long period of transients.
(H3) The initial conditions x0 and y0 in (5) and (6), respectively, are chosen close enough to each other (in the
same basin of attraction).

Now, we can introduce the following theorem (proved in Rn [17, 18]).

Theorem 1 The solution of Equation (5) approaches the solution of Equation (6).

The proof presented in [17] is based on the averaging theory [25], and is done via generalized Péano-Baker series,
while the proof presented in [18] uses the convergence of known numerical methods for ODEs.

Thus, it is proved that the distance between the solutions of linearized Equation (5) and of Equation (6),
starting from the same basin of attraction, is negligible. Therefore, we have revealed (see also [27], Chapter 6)
that the invariant sets of system (5), determined numerically, converge to the invariant sets of system (6). This
means that the PS algorithm, modeled by (5), is approximated by periodical parameter switching and that the
attractor corresponding to p∗ is generated by (6).

To Summarize, by switching p periodically while the IVP is numerically integrated, one obtains a synthesized
attractor, A∗, which matches with the attractor Ap∗ obtained when p is replaced by p∗.

The PS algorithm is useful in practical examples when one intends to obtain some attractor A∗, but its
underlying parameter p∗ cannot be set. Thus, p∗ and the corresponding attractor Ap∗ will be obtained by
switching p within some accessible set of values PN .
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2.2 Numerical implementation

Theorem 1 only proves that the PS algorithm convergences to some attractor A∗, which approximates the
attractor Ap∗ , but it does not indicate any way to implement it in concrete examples. Therefore, a numerical
modality to implement this result is necessary. For this purpose, two steps are formulated:

I) run the PS algorithm, which generates a synthesized attractor A∗ via parameter switching;
II) show numerically (aided by characteristic tools for dynamical systems) that A∗ matches with the average
attractor Ap∗ obtained when p is replaced by the average value p∗.

Remark 2 (i) Step II is necessary in order to prove that A∗ is not just an attractor, but it belongs to the set
of attractors of the underlying system.
(ii) Due to the predominant numerical characteristics of the present work, the time interval I is considered
hereafter finite: I = [0, T ], with T > 0.
(iii) Regarding the approach to the discontinuous case, it is noted that the underlying IVP can be continuously
approximated in some neighborhood of the discontinuity point (here, x1 = 0 and x2 = 0), using e.g. the Filippov
regularization [11]. After this, the PS algorithm is applied, as described for the continuous case (see [8]). Thus,
the problem is transformed to a continuous one, where the PS algorithm is applicable.4

In order to reduce the number of transient steps and to avoid possible complication when, for a given p
value, there are several (coexisting) attractors, the initial conditions will be taken without loss of generality to
be x0 = y0.

Let us again consider the simpler case of continuous Duffing system (B = 0n×n, i.e. c = d = 0).

I) To implement the PS algorithm, a numerical method for ODEs such as the standard Runge-Kutta method
with a fixed step seize h, will be used. Suppose we chose PN , and p is switched indefinitely within PN for t < T ,
in the following manner

p(t) = pi if t ∈ Ii, pi ∈ PN , i = 1, 2, ..., N,

where the time subintervals Ii, i = 1, 2, ..., N , obtained by partition of I, satisfy I =
∪(∪N

k=1 Ik

)
.

The simplest way to realize that, numerically, is to choose the length of Ii as a multiple of h: Ii = mih,
where mi, i = 1, 2, ..., N , are some positive integers (”weights”).

Denote the PS algorithm, for a step size h, as follows

[m1p1,m2p2, ...,mNpN ]. (7)

The pseudocode for PS algorithm is presented in Table 1.
For example, by [1p1, 2p2], we understand that PS, with N = 2, P2 = {p1, p2}, m1 = 1 and m2 = 2,

integrates the IVP for one step of size h with p = p1. Then, perform the next two steps with p = p2 and again
one step with p = p1; after that, perform two steps p = p2 and so on, until t ≥ T , where the period T0 = 3h
and p∗ = (1× p1 + 2× p2)/(1 + 2).

If, for a given PN and a fixed h, we intend to obtain some p∗, then we have to choose the set m1,m2, ...,mN ,
such that (4) is verified. Reversely, it is possible to have the set PN and the switching times Ii (i.e., the set
{m1,m2, ...,mN} is given). Then, (4) will generate a value for p∗.

Remark 3 (i) As can be seen from relation (4), p∗ is a convex combination of pk. Therefore, p∗ will belong to
the real open interval (p1, pN ), if pk, k = 1, 2, ..., N , are considered to be ordered. Hence, if we intend to generate
some attractor Ap∗ , starting with the set PN = {p1, p2, ..., pN}, a necessary condition is that p∗, given by (4)
satisfies p∗ ∈ (p1, pN ). However, this does not necessarily mean that p∗ ∈ PN (see Remark 1). Moreover, the
convexity implies that if PN is included in some periodic window, and therefore contains only periodic values,
then under whatever switching scheme, the PS algorithm will lead to a stable periodic motion.
(ii) While the systems modeled by (2) and (6) are autonomous (p and p∗ are constant), (5) models a nonau-
tonomous system. Therefore, theoretically, the choice of initial conditions depends on t0. Let us consider, for
example, the scheme [m1p1,m2p2]. If t0 belongs to interval I1, for which p = p1, then the PS algorithm leads
to the same A∗, because the algorithm starts integration with p1. The result should be different if t0 ∈ I2, for
which p = p2, when the algorithm begins with p2. However, after a number of transient steps, the results show
that A∗ does not depend on t0. Therefore, we can simply choose t0 = 0.
(iii) It is easy to see that for a given set PN , Equation (4) has several sets of solutions mk, k = 1, 2, ..., N . This
means that choosing different schemes [m1p1,m2, p2, ...,mNpN ] with the same PN set, one can obtain the same
attractor A∗. Obviously, the same attractor A∗ can be obtained with infinite many choices of mk and PN sets.

4One of the best known books on the approximation theory of discontinuous IVP via differential inclusions is [1].
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II) To numerically check that the synthesized attractor A∗ obtained with the PS algorithm matches with the
average attractor Ap∗ , several tools can be used: superimposed histograms, Poincaré sections, time series, phase
plots and also Hausdorff distance [10], which is the most rigorous numerical match verification (see Appendix).
In this paper, we plot both attractors A∗ and Ap∗ in the same phase plane and calculate their Hausdorff distance
to underline the match between them.

To summarize, using the PS algorithm one can do the following

–synthesize any desired attractor corresponding to some value p∗; for this purpose, we have to choose N ,
PN and m1,m2, ...,mN , such that (4) is satisfied;

or
–choose N , PN and m1,m2, ...,mN , and apply the PS algorithm to obtain some attractor A∗ (stable or

chaotic), which belongs to the set of all attractors of the considered system.

Therefore, if we intend to find some attractor Ap (stable limit cycle here) for some value p, we have to choose
N , PN and the values m1,m2, ...,mN , such that (4) is satisfied when p∗ is replaced by p. Then, applying the
PS algorithm one obtains A∗ which, as mentioned before, will be a numerical approximation of the attractor
Ap∗ , i.e. the searched attractor.

3 Finding stable limit cycles of the Duffing system

The best way to study the effect of one specific parameter is to perform bifurcation analysis with respect to it.
With the data presented in Section 1, the one-parametric bifurcation diagrams necessary for both continuous
and discontinuous cases are plotted in Fig.1 a, b and c, respectively. As typical for most Duffing type of
systems, two types of routes to chaos can be found, namely chaos after (inverse) period doubling bifurcations
(Feigenbaum route to chaos) and the intermittent type (arising at the edge of Feigenbaum bifurcation). Also,
sudden changes in the size of a chaotic attractor and in the number of unstable periodic orbits (crisis) can be
viewed in all three bifurcation diagrams shown in the figure. For the discontinuous case, one can observe a
typical abruptly stability change (possible hysteresis) (Fig.1 b and c).

All the numerical tests have been performed with the standard Runge Kutta scheme with, unless specified
otherwise, h = 0.005, T = 500 and initial conditions (0.1, 0.1, 0.1). The results are summarized in Table 2.

As is well known, the Duffing system presents strong asymptotic behavior. Therefore, as stated above, the
beginning transient steps are neglected. The used values for p∗ are plotted with dashed lines in the bifurcation
diagrams in the above figures. The calculated Hausdorff distance, DH , with a few exceptions (related to the
PS algorithm limits, see Section 4), is of order 10−3, which confirms a good approximation. Supplementarily,
to verify the match between A∗ and Ap∗ , beside DH , both attractors are plotted superimposedly in the phase
plane (in blue and red, respectively).

3.1 A. Continuous case of c = d = 0

Consider the IVP (3) with B = O3×3, (c = d = 0):

.
x1 = x2,
.
x2 = −x2 − px1 − x3

1 + 37 cos (x3) ,
.
x3 = 0.88.

(8)

(a) Suppose we intend to obtain a stable higher-periodic limit cycle corresponding to p = 0.13 (see Fig. 1) by
using N = 2 values for p: P2 = {0.1, 0.16}. This means that in (4), we replace p∗ with 0.13 and find one of
the possible solutions for mk (see Remark 3 (iii)), e.g. m1 = m2 = 1. With these values, the PS algorithm
can then be applied to obtain A∗, which is the numerical approximation of A∗

p with p∗ = 0.13. The attractors
corresponding to p = p1 and p = p2 (A0.1 and A0.16 respectively) are chaotic (see projections of the phase
portraits in Fig. 2 b and c), while the synthesized and average attractors A∗ and Ap∗ , with p∗ = 0.13, are
indeed stable higher-periodic cycles (Fig.2a).

(b) The same attractor (Remark 3 (iii)) A∗, with p∗ = 0.13, can be obtained, e.g. with N = 4, using the scheme
[2p1, 1p2, 1p3, 2p4], for p1 = 0.11, p2 = 0.12, p3 = 0.14, p4 = 0.15 (Fig. 3a).

(c) As shown above, an rather arbitrary attractor can be obtained with a larger number N . For example,
A0.13 can be synthesized with N = 21 and pk = 0.05 + k × 0.01, k = 1, 2, ..., 20, k ̸= 8 (see Remark 1) and
m1 = 3,m2 = 4,m3 = 2,m4 = 4,m5 = m6 = m7 = m8 = m9 = 1,m10 = m11 = 2,m12 = ... = m21 = 1 (Fig.
3b).
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(d) Stable limit cycles can be obtained even if PN contains only periodic values, e.g. embedded in a periodic
window (see Remark 3 (i)). For example, with PN = {0.27, 0.49} and the scheme [3p1, 1p2], one obtains the
stable limit cycle A0.325. In Fig. 4 a, all the attractors are plotted in the same phase plane, so as to compare
A∗ with the underlying attractors A0.27 and A0.49.

(e) As shown in [6], the PS algorithm can be applied in a certain random manner. In so doing, the p values will
not be alternated within PN in a periodic (deterministic) manner, but rather randomly. However, in this case
one obtains an average value po, which is only approximatively close to p∗ and has to be determined with the
following formula:

po =

N∑
k=1

pkm
′
k

N∑
k=1

m′
k

,

where m′
k counts the number of pk during the integration over I.

For example, if one chooses N = 2 and switch p randomly (with uniform distribution) within the set
{0.12, 0.14}, then after 200000 steps with h = 0.005 and po = 0.13001, the attractor Ao is still close to Ap∗ .
However, some difference between A∗ and A∗, like those shown in Fig. 3 b, can be observed (Fig. 4 b). In this
case, DH is only of order 10−2.

Remark 4 (i) Obviously, for the value po to be closer to p∗, the integration time interval I = [0, T ] has to
be larger than that for deterministic switching. However, we cannot expect that an asymptotic increase of I
(i.e. T → ∞) will finally imply po = p∗, since the global error for a convergent method (like the Runge-Kutta
scheme used here) grows exponentially. For example, for the Runge-Kutta method, the global error is [27]
K/Lhr(eLT − 1), where L is the Lipschitz constant of the right-hand side of the corresponding IVP, r is the
method order, and K is some constant. Thus, the global error depends exponentially on the size T . Nevertheless,
in our numerical experiments, for random switching, with reasonable T values of order 103 (e.g. T = 1000, i.e.
more than twice of that for the periodic case), we obtain ||p∗ − po|| < 10−5.
(ii) Now, it becomes obvious that the above-mentioned periodicity of p is not a necessary condition.

3.2 B. Discontinuous case of c = 0 and d = 1

In this case, the system becomes

.
x1 = x2,
.
x2 = −x2 − px1 − x3

1 − sign(x2) + 37 cos (x3) ,
.
x3 = 0.88.

(9)

As mentioned above, the discontinuous IVP can be continuously approximated in a small neighborhood of
(x1, 0, x3), after which the PS algorithm can be applied.

(a) To obtain a stable limit cycle, corresponding to e.g. p = 0.0375, we can use the scheme [1p1, 1p2] with p1 = 0
and p2 = 0.075 (Fig. 5 a), for which p∗ = 0.0375.

(b) With N = 10 and scheme [m1p1, ...,m10p10], pk = 0.05 + k 0.01, k = 1, ..., 11, k ̸= 6 (see Remark 1) and
m1 = ... = m9 = 1, m10=2, another stable limit cycle corresponding to p = 0.12 can be obtained (see Fig. 1 b).
The attractors A∗ and Ap∗ are plotted in Fig.5 b.

As can be seen from Fig.1 b, there exists an apparently periodic window corresponding to p ≃ 0.045, which
actually is a chaotic window.

3.3 C. Discontinuous case of c = 1 and d = 0

With c = 1 and d = 0, the system has the following form

.
x1 = x2,
.
x2 = −x2 − px1 − x3

1 − sign(x1) + 37 cos (x3) ,
.
x3 = 0.88.

(10)

The discontinuous IVP is continuously approximated as did in Subsection 3.2.
(a) Consider the stable limit cycle A0.16 (Fig. 1 c). This stable attractor can be obtained with scheme [1 ×
0.1, 1 × 0.22] . The attractors A∗ and Ap∗ are plotted superimposedly in Fig. 6 a, while A0.1 and A0.22 are
plotted in Fig. 6 b and c, respectively.
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(b) To obtain another stable limit cycle, A0.135 (see Fig. 1 c) withN = 10, we use the scheme [m1,m2, ...,m10p10]
with pk = (k − 1)0.03, and mk = 1 for k = 1, 2, ..., 10. Attractors A∗ and Ap∗ , with p∗ = 0.135, are plotted
superimposedly in Fig. 6 d.

4 PS algorithm limits

As expected, the numerical PS algorithm has performance limits due to several factors, such as: errors of the
numerical method, lengths of the time-subintervals Ik, k = 1, 2, ..., N , i.e. sizes of mk, the N value, the digit
number of p, the step size h, and the distance in the parameter space between different pk. Also, the way in
which p is switched (deterministic or randomly) is another factor that influences the PS algorithm performances.

We now present more precise discussions on this concerned issue.

Influence of N
Actually, N is not an influential factor if the step size h is chosen to be small enough. Thus, N can even be of
order 102 without influencing substantially the accuracy of the results.

Influence of the Ik length
This parameter measures the “weight” of each pk value. It is a critical parameter. We consider here the case of
discontinuous Duffing system (9) with N = 2, PN = {0.12, 0.14}, T = 500, and the scheme [m1p1,m2p2]. Here,
m1 and m2 will be chosen equal, such that p∗ = 0.13 for all considered examples. It is obvious that large Ik (or
mk) may influence the convergence of A∗ to Ap∗ . Its influence should be considered together with that of h.
For example, if we consider h = 0.005, a superior limit for m1 and m2 could be 25, i.e. length Ik = 25h, since
A∗ and Ap∗ do not match properly (see Fig. 7 a). However, for a smaller step size h = 0.001, the difference
diminishes (Fig. 7 b). If we consider a larger value for N , e.g. N = 35, then h = 0.005 is no longer a suitable
value (Fig. 7 c) and this happens even if a smaller value is chosen for h, e.g. h = 0.001 (Fig. 7 d).

Influence of the h size
The h value is another important factor that influences the results together with mk, as shown above. In our
examples, h should be taken to be about 0.005. Whatever are the mk values, larger step sizes can lead to
mismatches especially because of the errors induced by the used numerical method, while smaller values of h
(e.g. of order 10−4) could be considered, but at the cost of the computational time, which has no significant
increase of accuracy of the PS algorithm.

Influence of the distance between different pk
As can be seen in the examples considered above, this parameter in the PS algorithm does not influence the
performances.

Influence of the p digits
Another source of errors is the accuracy in presenting the value p. Even though the program codes we use can
deal with a high but finite precision, it is not helpful to use more than 4 decimals for p∗. For example, the
width of some (periodic or chaotic) windows in the parametric space is of order 10−4 (see Fig. 1 b).

5 Conclusions and Discussions

In this paper, we have shown numerically that any stable attractor (limit cycle) of a generalized Duffing system
can be well approximated by simple parametric switching, with main results summarized in Table 2. The
switching can be performed in either some deterministic way or random manner within a specified set of values.
The only necessary condition is that the targeted value of parameter p, being replaced in (4), is located inside
the real open interval (p1, pN ), due to the convex property of the set of p∗ values.

Using the PS algorithm, not only regular but also chaotic motions can be well approximated. Therefore,
the PS algorithm can be viewed as a kind of control/anticontrol algorithm [5], which can be used whenever
some targeted value p∗ cannot be accessed directly due to some technical reasons. Compared to the classical
control/anticontrol methods, where e.g. an unstable periodic orbit (UPO) is transformed into a stable one,
here we synthesize an already existing stable orbit. Also, one of the most important and useful features of the
PS algorithm is that the differences between the pk values can be arbitrarily large in contrast to the classical
control/anticontrol schemes.

The PS algorithm can be used to explain why in some real systems, accident switching of a parameter could
significantly change the behavior of the system. It can also be used to illustrate how to obtain a desired behavior
starting from an accessible set of parameter values.
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How to implement experimentally the PS algorithm into real systems should be investigated. From the
existing possibilities, we may choose the schemes [m1p1, ...,mNpN ], for fixed N , which are the ones with large
time intervals Ik (high values mk).

For small differences between different elements of PN , with N sufficiently large, we could consider that
the PS algorithm acts like inducing some kind of parametric noise. Thus, in this case, by involving parametric
noise, we can find transition from a stable or unstable state to another stable state.

The existence of an isomorphism between PN and the set of all attractors of the system (belonging to the
class of considered systems) could be useful to show that, following the convex property of p∗, A∗ might be a
kind of “convex combination” of the attractors Ap1 , Ap2 , ..., ApN , in the state space (see, e.g., Fig. 4 a).

The PS algorithm seems to work for other more general classes of systems, not only for p-linear systems
modeled by (3). Thus, we may consider the archetypal oscillator [4], which bears significant similarities to the
Duffing oscillator, given by

..
x+ 2ξ

.
x+ x

(
1− 1√

x2 + α2

)
= f0 cos (ωt) , (11)

with the control parameter p = α and the other parameters particularized as follows:

·
x1 = x2,
·
x2 = −0.0282x2 − x1

(
1− 1√

x2
1+p2

)
+ 0.8cos(x3),

·
x3 = 1.0607.

By using the PS algorithm with N = 2, PN = {0.8, 1.2} and scheme [1m1p1, 1m2p2], a similarity between A∗

and Ap∗ with p∗ = 1, can still be recognized, although the attractors do not match as well as for the case of (3)
(see Fig. 8 a). Precisely, the relation (4) does not hold.

However, if we consider ξ as the control parameter, the system (11) belongs to the class of systems modeled
by (2) and the PS algorithm can still be applied even with N = 100 values which, for pk = k × 0.0002 and
mk = 1, k = 1, 2, ..., 100, yields p∗ = 0.0101 (Fig. 8 b).
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Appendix Hausdorff distance between two sets

Consider a metric space. As is well known, in order to calculate Euclidean distance between two sets, we
have to find some Euclidean isometry such that they become aligned, a difficult task in our present study. This
inconvenience can be avoided if we use Hausdorff distance instead, which looks only at the interpoint distance
between the points on each set.

The Hausdorff distance (or Hausdorff metric) DH measures how far two compact nonempty subsets of the
considered metric space are from each other. Since the considered attractors (stable limit cycles here) are
nonempty compact sets, we can calculate DH . Here, two sets are close to each other in the Hausdorff distance
if every element of a set is close to some element of the other set.

The Hausdorff distance between two curves in Rn is defined as the maximum distance to the closest point
between the curves. If the curves are defined, as in our case, as the sets of ordered pair of coordinates A =
{a1, a2, ..., ak1}, B = {b1, b2, ..., bk2}, with ai = (x1, x2, ..., xn) and bj = (y1, y2, ..., yn), then DH can be expressed
as follows (Fig. 9):

DH (A,B) = max {d (A,B) , d(B,A)} , (12)

where the distance between A and B, denoted by d(A,B) (generally different from d(B,A)), has the following
form:

d(A,B) = max
i

{d (ai, B)} ,

and is defined via the Euclidean distance between ai and B (Fig. 9a) as

d (ai, B) = min
j

||ai − bj ||.

Compared with other conventional methods, which require substantial computing time, DH is very easy to
calculated numerically. The only requirement to apply the relation (12), e.g. for our examples, is the number
of points on each curve (k1 and k2 respectively) must be large enough, so as to well describe the entire curve.
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Figure 9:

Input : N, PN , T, h, m1, . . . ,mN

t = 0
Repeat

For k = 1 to N do
p = pk
for i = 1 to mk do

integrate IV P (2)
t = t+ h

end
end

until t ≥ Tmax

Table 1:
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System Scheme m PN p∗ Fig.
[m1p1,m2p2] m1 = m2 = 1 p1 = 0.1, p2 = 0.16 0.13 2

[m1p1, ...,m4p4] m1 = m4 = 2, m2 = m3 = 1
p1 = 0.11, p2 = 0.12,
p3 = 0.14, p4 = 0.15

0.13 3a

IV P (8)
c = 0
d = 0

[m1p1, ...,m21p21]

m1 = 3, m2 = m4 = 4, m3 = 2,
m5 = ... = m8 = 1
m9 = m10 = 2,

m11 = ... = m21 = 1

pk = 0.05 + k × 0.01,
k = 0, 1, ..., 21, k ̸= 8

0.13 3 b

[m1p1,m2p2] m1 = 3, m2 = 1 p1 = 0.27, p2 = 0.49 0.325 4 a

random scheme p1 = 0.12, p2 = 0.14
po = 0.13001
p∗ = 0.13

4 b

[m1p1,m2p2] m1 = 1, m2 = 1 p1 = 0, p2 = 0.075 0.0375 5 a
IV P (9)
c = 0
d = 1

[m1p1, ...,m10p10]
m1 = ... = m9 = 1,

m10 = 2,
pk = 0.05 + k × 0.01,
k = 1, 2, ..., 11, k ̸= 6

0.12 5 b

IV P (10)
c = 1
d = 0

[m1p1,m2p2] m1 = 1, m2 = 1 p1 = 0.04, p2 = 0.28 0.16 6 a

[m1p1, ...,m10p10] m1 = ... = m10 = 1
pk = (k − 1)× 0.03,

k = 1, ..., 10
0.135 6 b

Table 2:
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Figure captions
Fig. 1. Bifurcation diagram of the Duffing system (3). The dashed lines present the parameter values

corresponding to the synthesized attractors. (a) Continuous case (c = d = 0). (b) Discontinuous case (c =
0, d = 1). (c) Discontinuous case (c = 1, d = 0).

Fig. 2. The PS algorithm applied to the continuous Duffing system (8) with N = 2, P2 = {0.1, 0.16} and
m1 = m2 = 1. (a) A∗ and Ap∗ , with p∗ = 0.13. (b) Attractor A0.1. (c) Attractor A0.16.

Fig. 3. The stable limit cycle A0.13 of the continuous Duffing system (8) obtained with (a) [2p1, 1p2, 1p3, 2p4],
for p1 = 0.11, p2 = 0.12, p3 = 0.14, p4 = 0.15. (b) Same attractor A0.13 for N = 21 with pk = 0.05+k×0.01, k =
1, 2, ..., 20, k ̸= 8 and m1 = 3,m2 = 4,m3 = 2,m4 = 4,m5 = m6 = m7 = m8 = m9 = 1,m10 = m11 = 2,m12 =
... = m21 = 1. Both attractors A∗ and Ap∗ , with p∗ = 0.13, are plotted superimposedly.

Fig. 4. (a) The stable limit cycle A0.325 of the continuous Duffing system (8) obtained with PN = {0.27, 0.49}
and the scheme [3p1, 1p2}. All the attractors, A∗, Ap∗ (with p∗ = 0.325), A0.27, and A0.49, are plotted in the
same phase plane. (b) The PS algorithm applied with uniformly distributed random switching of p within the
set {0.12, 0.14} to obtain the attractor A0.13.

Fig. 5. (a) Stable limit cycle A0.0375 for the discontinuous Duffing system (9), obtained with [m1p1,m2p2] for
p1 = 0, p2 = 0.075 and m1 = m2 = 1. b) Stable limit cycle A0.12 obtained with the scheme [m1p1, ...,m10p10],
with pk = k0.01 + 0.05, k = 1, ..., 11, k ̸= 6 and m1 = ... = m9 = 1, m10=2.

Fig. 6. Stable limit cycle A0.16 of the discontinuous Duffing system (10) obtained with the scheme [1 ×
0.1, 1×0.22]. (a) A∗ and Ap∗ with p∗ = 0.16. (b) A0.1. (c) A0.22. (d) Stable limit cycle A0.135 obtained with the
scheme [m1p1,m2p2, ...,m10p10] with pk = (i− 1)0.03, i = 1, 2, ..., 10 and mk = 1, k = 1, 2, ..., 10. p∗ = 0.135.

Fig. 7. Stable limit cycle A0.13 of the discontinuous Duffing system (9) obtained with [m1p1,m2p2] with: (a)
m1 = m2 = 25 and h = 0.005. (b) m1 = m2 = 25, h = 0.001. (c) m1 = m2 = 35, h = 0.005. (d) m1 = m2 = 35,
h = 0.001.

Fig. 8. (a) The PS algorithm applied to the system (11) for p = α as control parameter and with N = 2,
PN = {0.8, 1.2} and scheme [1p1, p2]. (b) The PS algorithm with N = 100, applied to the same system, but
with p = ξ.

Fig. 9. Hausdorff hdistance. (a) d(ai, B); (b) DH for two ideal cases. A suggested applet can be found from
[30].
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Table captions
Table 1. Pseudo-code of the PS algorithm.
Table 2. The PS algorithm applied to the Duffing systems (8), (9) and (10).
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